Uni Koeln mit Schrift small

Log in

Log in

Project Introduction C2 - Transport and deposition

Deciphering the evolution of the alluvial fans [between 21°S and 25°S – the interplay between climatic and tectonic control]

Despite the hyperaridity, we encountered a surprisingly diverse fauna bound to the coastal environment; being either dependent on the nutrient-rich Humboldt Current or the moisture-bearing coastal fog locally known as ‘camanchaca’ and feeding the Loma vegetation.

The project C2 focuses on alluvial fans – special conical sedimentary landforms typical along mountain fronts – in the coastal Atacama Desert. They emerge from the steep Coastal Cordillera and spread over a narrow plain to the Pacific Ocean. By studying the architecture, timing, and drainage basin characteristics of the alluvial fans along a South-North gradient of increasing dryness (‘aridity’), we aim at deciphering the different impacts of climatic and geologic controls on fan evolution. This knowledge is crucial to understand fluvial transport and sedimentation (river deposits) in this unique, extremely dry (‘hyperarid’) landscape. This is particularly important under changing climatic conditions.

 

“Unique about this project is the combination of different geomorphological, sedimentological, and geochronological approaches allowing us to reconstruct the evolution of such a special coastal environment – being special due to its aridity and steep relief.”
– Prof. Dr. Frank Lehmkuhl

One could think that working in the midday sun was the toughest part of the field work, but, in fact, hiking up the steep fans and their catchments during the foggy and thereby water-saturated morning air was more arduous.

So far, very little research focused on alluvial fans interacting with the marine environment in hyperarid regions. The coastal alluvial fans in the Atacama Desert are especially interesting because they differ considerably in their architecture, age, and activity from the interior fans of the Atacama Desert. The coastal fans are comparatively short (few hundreds of meters to maximum three kilometers) due to erosion by wave action but thick. Rare but extraordinary rainfall events, like the one in March 2015 (see link below), affect in particular the coastal region by severe debris flows.

Moreover, we use and compare a wide range of numerical dating techniques to get first age information on alluvial fan activity in the coastal Atacama during the late Quaternary. In contrast to the interior fans which date back to the Miocene-Oligocene (9 to 34 million years ago, e.g. Dunai et al., 2005, Ritter et al., 2018), fan deposits at the coast are as yet exclusively dated by us to be younger than the last interglacial (last 100,000 years). 

“The ability to see stunning landforms and deposits of various geomorphological processes in a hyperarid region with barely any vegetation is like looking at the evolution of Earth’s naked skin.”
– Prof. Dr. Helmut Brückner

 

Publication

Other references

  • Dunai, T.J., González López, G.A., Juez-Larré, J., 2005. Oligocene-Miocene age of
              aridity in the Atacama Desert revealed by exposure dating of erosion-sensitive
              landforms. Geology 33, 321–324. https://doi.org/10.1130/G21184.1
  • Ritter, B., Stuart, F.M., Binnie, S.A., Gerdes, A., Wennrich, V., Dunai, T.J., 2018.
              Neogene fluvial landscape evolution in the hyperarid core of the Atacama
              Desert. Sci. Rep. 8, 13952. https://doi.org/10.1038/s41598-018-32339-9

Contact

Prof. Dr. Frank Lehmkuhl
Phone: +49 (0) 241 8096 064
E-Mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Pressen Eulychnia TBoehnert TB011954 1 350pxField work at the alluvial fan Guanillos in March 2017
Photo: Jean-Pierre Francois

 

Pressen Eulychnia TBoehnert TB011954 1 350pxAlternating sequence of aeolian and terrestial deposits at Coloso
Photo: Janek Walk

 


Project



Contact

  Speaker:
Prof. Dr. Tibor J. Dunai
Institute of Geology and Mineralogy | University of Cologne
Zülpicher Str. 49b | 50674 Cologne
+49 (0)221 470-3229 | tdunai@uni-koeln.de
   
  Managing Director:
Christian Tiede
Institute of Geology and Mineralogy | University of Cologne

Zülpicher Str. 49b | 50674 Cologne
+49 (0)221 470-89833 | christian.tiede@uni-koeln.de

 _

  Co-Speaker:
Prof. Dr. Martin Melles
Institute of Geology and Mineralogy | University of Cologne

Zülpicher Str. 49a | 50674 Cologne
+49 (0)221 470-2262 | mmelles@uni-koeln.de
   
  Scientific Coordinator:
Dr. Benedikt Ritter
Institute of Geology and Mineralogy | University of Cologne

Zülpicher Str. 49b | 50674 Cologne
+49 (0)221 470-89868 | benedikt.ritter@uni-koeln.de

 _

  Co-Speaker:
Prof. Dr. Dietmar Quandt
Nees Institute for Biodiversity of Plants | University of Bonn

Meckenheimer Allee 170 | 53115 Bonn
+49 (0)228 73-3315 | quandt@uni-bonn.de
   
  Webmaster:
Tim Schlüter
Institute of Geography | University of Cologne

Otto-Fischer-Str. 4 | 50674 Cologne
+49 (0)221 470-3735 | webmaster@sfb1211.de
Uni Köln   Uni Bonn   Goethe Uni Frankfurt   GFZ
           
  RWTH Aachen   Uni Heidelberg    

Partners Chile

 

Logo Partner Chile   Logo Partner Chile  

Logo Partner Chile

  Logo Partner Chile   Logo Partner Chile
                 
Logo Partner Chile   Logo Partner Chile   Logo Partner Chile   Logo Partner Chile

Partners Namibia

 

Logo Partner Namibia   Logo Partner Namibia  

Logo Partner Namibia

  Logo Partner Namibia